
ORIGINAL RESEARCH
published: 15 May 2020

doi: 10.3389/fcomp.2020.00013

Frontiers in Computer Science | www.frontiersin.org 1 May 2020 | Volume 2 | Article 13

Edited by:

Nicholas Cummins,

University of Augsburg, Germany

Reviewed by:

Saturnino Luz,

University of Edinburgh,

United Kingdom

Theodora Chaspari,

Texas A&M University, United States

*Correspondence:

Chi-Chun Lee

cclee@ee.nthu.edu.tw

Specialty section:

This article was submitted to

Human-Media Interaction,

a section of the journal

Frontiers in Computer Science

Received: 11 August 2019

Accepted: 16 April 2020

Published: 15 May 2020

Citation:

Li J-L, Huang T-Y, Chang C-M and

Lee C-C (2020) A Waveform-Feature

Dual Branch Acoustic Embedding

Network for Emotion Recognition.

Front. Comput. Sci. 2:13.

doi: 10.3389/fcomp.2020.00013

A Waveform-Feature Dual Branch
Acoustic Embedding Network for
Emotion Recognition

Jeng-Lin Li 1,2, Tzu-Yun Huang 1,2, Chun-Min Chang 1,2 and Chi-Chun Lee 1,2*

1Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2MOST Joint Research Center for AI

Technology and All Vista Healthcare, Taipei, Taiwan

Research in advancing speech emotion recognition (SER) has attracted a lot of attention

due to its critical role for better human behaviors understanding scientifically and

comprehensive applications commercially. Conventionally, performing SER highly relies

on hand-crafted acoustic features. The recent progress in deep learning has attempted

to model emotion directly from raw waveform in an end-to-end learning scheme;

however, this particular approach remains to be generally a sub-optimal approach. An

alternative direction has been proposed to enhance and augment the knowledge-based

acoustic representation with affect-related representation derived directly from raw

waveform. Here, we propose a complimentary waveform-feature dual branch learning

network, termed as Dual-Complementary Acoustic Embedding Network (DCaEN), to

effectively integrate psychoacoustic knowledge and raw waveform embedding within

an augmented feature space learning approach. DCaEN contains an acoustic feature

embedding network and a raw waveform network, that is learned by integrating negative

cosine distance constraint in the loss function. The experiment results show that DCaEN

can achieve 59.31 an 46.73% unweighted average recall (UAR) in the USC IEMOCAP

and the MSP-IMPROV speech emotion databases, which improves the performance

compared to modeling either acoustic hand-crafted features or raw waveform only and

without this particular loss constraint. Further analysis illustrates a reverse mirroring

pattern in the learned latent space demonstrating the complementary nature of DCaEN

feature space learning.

Keywords: speech emotion recognition, raw waveform, end-to-end, complementary learning, acoustic

representation

1. INTRODUCTION

Human’s internal affective states influence our high-level cognitive processing that is reflected
both in our daily decision making and manifested in our behaviors. Enabling machines to assess
human emotion has become an important research direction that impacts the current proliferation
of human-centered technology. The ability to perform emotion recognition from speech has
shown to be beneficial across a wide range of current speech-based interfacing applications,
e.g., intelligent commercial dialog system (Callejas et al., 2011), personalized recommendation
system (Tkalcic et al., 2011), and health care service (Pentland, 2004; Tokuno et al., 2011;
Mano et al., 2016). Research in algorithmic development for speech emotion recognition (SER)
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has started off by computing hand-crafted engineered features,
such as mel-frequency cepstral coefficients (MFCCs), perceptual
linear prediction (PLP) coefficients, and supra-segmental features
like prosodic descriptors. These acoustic descriptors are designed
based on decades of research in auditory production and
speech perception, and they have been consistently applied
for many paralinguistic recognition tasks such as the series of
ComParE (Schuller et al., 2013) and AVEC (Ringeval et al., 2015)
challenges. Furthermore, prior to deep learning, researchers
utilized supervised models such as hidden markov model
(HMM) (Nwe et al., 2003; Mao et al., 2009), support vector
machine (SVM) (Lin and Wei, 2005; Chavhan et al., 2010), and
Gaussian mixture model (GMM) (Neiberg et al., 2006; Hu et al.,
2007), to perform emotion recognition.

Much of the recent improvement in the SER system comes
from the advancement of the deep learning based recognition
frameworks, i.e., replacing the classifier portion with different
neural network architectures. For example, neural network based
recognition methods such as feedforward neural network (Li
et al., 2013; Han et al., 2014), 1-D and 2-D convolutional neural
networks (Huang et al., 2014; Badshah et al., 2017; Zhao et al.,
2019), recurrent neural network (RNN) (Lee and Tashev, 2015;
Mirsamadi et al., 2017) and hybrid models combining different
network architectures (Lim et al., 2016) have all been shown to
exceed performances of traditional supervised machine learning
methods. Even though there are already a number of effective
deep learning frameworks proposed, most of these architectures
still heavily rely on the hand-crafted acoustic features as front-
end input (Huang et al., 2018; Jiang et al., 2019; Shahin
et al., 2019), which continue to require extensive knowledge
for emotion-related acoustic feature design and engineering
(El Ayadi et al., 2011).

Deep learning based methods provides not only an improved
recognition framework but more importantly an ability to
automatically learn representation directly from the raw
data. Researchers have also started to investigate end-to-end
approaches for task of SER, i.e., learning to classify emotion states
directly from time-domain speech waveform. For example, 1-D
time domain raw waveform is modeled by multiplying parallel
1-D convolution layers and pooling layers using a variety of
filter parameter design within each layer and finally feeds the
learned layer representation to a CNN-LSTM architecture for
recognition (Latif et al., 2019). A similar end-to-end approach
is also proposed by using a different choice of convolutional
kernels in terms of overlapping ratio, kernel size and pooling
size (Tzirakis et al., 2018). Another research uses time-delay
neural network (TDNN) layers and unidirectional recurrent long
short term memory (LSTM) layer with time restricted attention
layers to tackle the issue of long temporal context for raw speech
emotion identification task (Sarma et al., 2018).

While several of these works have invested extensive effort
in the design of sophisticated network architectures in order
to perform end-to-end emotion recognition, performances
of using raw waveform can still hardly surpass most of
those past works on using hand-crafted acoustic features or
those that based on using mel-frequency spectrograms as
input (Yenigalla et al., 2018; Badshah et al., 2019; Tripathi

et al., 2019); furthermore, modeling raw waveform tends to
require extensive network parameter tuning and non-trivial
techniques in dealing with the complexity (frequency-phase
interaction) in time domain. An alternative recent direction
has emerged that leverages the complementary information
between knowledge-inspired acoustic descriptors and end-to-
end acoustic representation (either time domain-derived or
mel-frequency domain-derived), specifically, augmenting these
two acoustic representations has been found to effectively
enhance the accuracy of emotion recognition. For example,
Lakomkin et al. propose a progressively trained neural network
that transfer knowledge of automatic speech recognition to
emotion recognition by augmenting feature space of spectrogram
jointly with MFCC and pitch (Lakomkin et al., 2017). Yang
et al. uses convolutional neural network (CNN) to model
raw waveform and spectrogram separately and fuse these two
different representation streams with a bidirectional long short-
term memory (BLSTM) (Yang and Hirschberg, 2018). Guo et al.
(2018) designs a CNN-based representation learning approach to
extract both amplitude and phase information and demonstrates
that the joint representation can outperforms other conventional
methods. Most recently, Guo et al. further proposes a dynamic
fusion network using kernel extreme learning machine (KELM)
to consider both spectrogram and knowledge-inspired acoustic
features (Guo et al., 2019).

These recent works demonstrate that end-to-end acoustic
representation indeed complement hand-crafted acoustic
features, and by fusing these two inputs together, SER
performances can be further improved compared to either
end-to-end only or knowledge-inspired acoustic representation
only. However, all of these previously-proposed frameworks
have merely stacked the separately-learned network layers, e.g.,
one from raw waveform and another from knowledge-inspired
features, as the fusion scheme. This type of method ignores the
naturally-existed redundancy between the two representations
and create a potential sub-optimal solution for SER, i.e., not
dealing explicitly with the complex interaction between different
types of feature inputs in a fine-grained manner. Hence, in our
previous work (Huang et al., 2019), we propose an waveform-
feature dual branch acoustic network learning framework called
Dual Complementary Acoustic Embedding Network (DCaEN)
to learn an augmented acoustic representation space that
embeds both knowledge based acoustic features and the extra
complementary cues derived from raw waveform to improve the
emotion recognition accuracy on the USC IEMOCAP database
(Busso et al., 2008). The learning of complementary information
depends on the introduction of a negative cosine constraint
loss term between the hand-crafted features and raw waveform
and further jointly optimizes with respect to the emotion
discriminative loss. In this work, we further extend our proposed
DCaEN framework with the following specific contribution:

• Evaluate and analyze the DCaEN on two different large scale
SER corpus, i.e., the USC IEMOCAP and the MSP IMPROV
(Busso et al., 2016), in order to further demonstrate the
effectiveness and robustness of our framework.
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FIGURE 1 | The 4-class emotion label distribution and the audio length distribution of IEMOCAP database.

• Compare the accuracy obtained when using different hand-
crafted acoustic features sets, i.e., the 88 dimensional
eGeMAPS (Eyben et al., 2016) and the 1,536 dimensional
EmoBase2010 (Schuller et al., 2010).

• Perform additional analysis in understanding the acoustic
properties of the learned complementary embedding from
raw waveform.

In this work, our proposed DCaEN, i.e., trained jointly with end-
to-end and hand-crafted acoustics features using complementary
constraint, obtains the highest emotion recognition rates
as compared to using single feature representation and/or
augmented representations without the complementary
constraint. Specifically, we obtain 59.31 and 59.00% unweighted
average recall (UAR) in a four-class emotion classification tasks
when using the eGeMAPS and the EmoBase2010 feature sets
on the IEMOCAP database, it also obtains the highest accuracy
of 44.42 and 46.73% on the MSP IMPROV dataset using the
eGeMAPS and the EmoBase2010. We further present two
different analyses on the effect of imposing this complementary
constraint on the two corpora, and both analyses results show
a similar trend, i.e., learning a more negatively-correlated
(i.e., not simply orthogonal) representations between the
two feature spaces tend to result in a higher accuracy rates,
and the two learned representations also show to occupy a
mirroring space with respect to each other. Furthermore,
we report a correlation analysis to demonstrate the potential
properties of the learned complementary embedding from the
raw waveform.

2. METHODS

2.1. Emotion Database
We evaluate our framework on two different databases, the
USC IEMOCAP (Busso et al., 2008) database and the MSP-
IMPROV database (Busso et al., 2016). We will briefly describe
each database below.

2.1.1. The IEMOCAP Database
We use the USC Interactive Emotional Dyadic Motion Capture
(IEMOCAP) database (Busso et al., 2008) to evaluate our
proposed framework. The database consists of 5 sessions acted
by 10 different actors (including 5 males and 5 females). The
database has approximately 12 h of data segmented manually
into utterances. Each utterance is annotated by at least three
annotators on 10 categorical emotion labels. In our experiment,
we follow the exact same experimental setting used in a previous
work (Fayek et al., 2017), i.e., using 4 emotion classes as the
targeted labels: sadness, happiness (include excitement), anger,
and neutral with a total of 5,531 utterances. The proportion
distribution of these emotion classes is shown in Figure 1.

2.1.2. The MSP-IMPROV Database
We also test our proposed model on the MSP-IMPROV database
(Busso et al., 2016). It contains utterances of 12 speakers from
a total of 6 sessions (each with a male and female pair). The
speaker in the MSP-IMPROV database is asked to speak a
specific sentence (target sentence) in each session in order to
carry out a constrained improvisational dialog. In addition,
the corpus is post-processed and split into four sub-sets: (i)
target-improvised: target sentences during improvised sessions
(ii) target-read: a read speech version of the target sentences,
(iii) other-improvised: utterances in the improvisation dialogs
other than the target sentences, and (iv) natural interaction:
utterances made during the breaks between each improvisation
session (i.e., when the actors are not acting). To be consistent
with the IEMOCAP database, we use 7,798 utterances that are
labeled as anger, happiness, neutrality, and sadness (792 angry,
2,644 happy, 3,477 neutral, and 885 sad). The proportion of each
emotion category is shown below Figure 2. We can see that the
distribution of emotion categories is more unbalance compared
to the IEMOCAP. In addition, the distribution of duration of
utterances is also shown blow Figure 2; the average duration of
an utterance is 4.07 s.
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FIGURE 2 | The 4-class emotion label distribution and the audio length distribution of MSP-IMPROV database.

2.2. Acoustic Features
2.2.1. Hand-Crafted Features
We utilize two different acoustic feature sets in this work
including eGeMAPS and EmoBase2010; each will be described
briefly in the following sections.

2.2.1.1. eGeMAPS

The extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) (Eyben et al., 2016) has been developed as a minimal
set of knowledge-inspired acoustic parameter set (88 dimensional
functional features) that has been shown to be robust for SER
across different databases (Aldeneh and Provost, 2017; Neumann
and Vu, 2017; Han et al., 2018). The eGeMAPS acoustic feature
set contains energy, spectral and frequency based low-level
descriptors associated with functional set implemented with
arithmetic mean, coefficient of variation, 20, 50, 80th percentile
of pitch and loudness, mean and standard deviation of the slope
of rising/falling signal parts. We extract the eGeMAPS feature set
using openSMILE toolbox (Eyben et al., 2013) with 20ms frame
size and 10ms step size.

2.2.1.2. EmoBase2010

We further use the openSMILE (Eyben et al., 2013) to extract a
much higher dimension (1536 dimensional) functional acoustic
feature, termed as the EmoBase2010. This 1536 dimensional
acoustic feature set has been proposed in the Interspeech
2010 Paralinguistic Challenge (Schuller et al., 2010). The high
dimensional feature set is composed by using a suite of functional
operators on a larger (34) low level descriptors including 12
dimensional Mel-Frequency Cepstral Coefficients, fundamental
frequency (F0), loudness, voice probability, zero crossing rate
and the first and second derivatives of MFCCs. The above
extracted low level descriptors are further combined with 21
different functionals in order to derive a high dimensional
acoustic feature vector. This set of acoustic parameters have been
applied successfully in various emotion recognition works when
the number of feature dimensions do not need to be constrained

nor minimal (Toledo-Ronen and Sorin, 2013; Chen et al., 2014;
Sahu et al., 2018).

2.2.2. Raw Waveform
We pre-process the raw waveform by splitting each utterance
audio recording into 6 s fix length segments. For those utterances
shorter than 6 sections, we perform zero-padding. Each 6 s
segment consists of 96,000 sample points (16 kHz sampling rate).
We use a 640 dimensional input vector, i.e., gathered every 150
time step units, as input to our proposed DCaEN.

2.3. Dual Complementary Acoustic
Embedding Network
The complete architecture is shown in Figure 3. Our proposed
DCaEN framework comprises two sub-networks: Feature
Network for hand-crafted features (Stage 1) and Complementary
Learning Network for learning representation from raw
waveform (Stage 2). We train the Feature Network using a
stacked fully connected layer neural network in the first stage
and then freeze it as a feature extractor. In the second stage, the
output of the Complementary Learning Network that models raw
waveform is learned with additional loss using a negative cosine
distance to the output of Feature Network. Finally, the output
of two networks learned in above stages are concatenated as an
joint representation for emotion classification layers.

2.3.1. Feature Network (Stage 1)
We implement the feature network using fully connected layers
that embed information from hand-crafted acoustic features as
input and end with softmax recognition layer. In this stage,
the loss function is specified as categorical cross entropy. The
embedding layer learns emotion related characteristics in terms
of expert-designed psychoacoustic features. That is, by extracting
the embedding output, we can obtain the knowledge-based
summarization of acoustically emotion relevant information. We
then freeze the learned Feature Network to provide an embedding
that represents expert knowledge of acoustic manifestation of
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FIGURE 3 | This is an overall schematic of our proposed Dual Complementary Acoustic Embedding Model (DCaEN) framework. The training process contains two

stages: the first stage is learning the Feature Network and freezing the network; the second stage is building an end-to-end architecture to learn complementary

embedding from raw waveform based on negative cosine loss constraint to the learned frozen Feature Network embedding. We finally concatenate both embeddings

to perform the final emotion recognition.

emotion in order to facilitate the complementary learning from
raw waveform in stage 2.

2.3.2. Raw Waveform Complementary Network

(Stage 2)
We build a CNN-LSTM neural network with two stacked 1-D
convolutional layers followed by two LSTM layers with attention
mechanism to learn representation from the raw waveform. The
network is further connected to a complementary embedding
layer and a final softmax dense layer for classification. The
core idea in Raw Waveform Complementary Network is that
raw waveform encompasses all aspects of acoustic information
involving both human physical and psychological characteristics.
Hence, our idea is to introduce a constraint to enforce the
learning of the representation to be both emotionally relevant,
and at the same time complementary to the expert-designed
acoustic feature in order to mitigate the issue that the network
converges to a representation that is affect irrelevant or
redundant.

Specifically, we use negative cosine similarity as the
complementary constraint (Equation 1) on the embedding
layer to force the raw waveform embedding becoming negatively
correlated to the extracted representation from the Feature
Network. The constraint can be written as a loss function to be

optimized shown as below:

Lcos(x1, x2) =
x1 · x2

‖x1‖ ‖x2‖
(1)

where x1 and x2 represent the extracted embedding from
Feature Network and the complementary embedding from Raw
Waveform Complementary Network, respectively. The cosine
complementary loss is added to the cross entropy loss and is
jointly optimized in the learning of the whole Raw Waveform
Complementary Network:

L = wLcos − (1− w)Lce (2)

wherew is a loss weighting term and the categorical cross entropy
loss is written as:

Lce(p, q) = −
∑

x

p(x) log q(x) (3)

In this complementary design of the DCaEN, the joint
optimization of complementary loss and classification loss
enables learning a latent complementary (with respect to
hand-crafted feature) representation in order to enhance the
emotional discriminative power as compared to simply learning
directly from the waveform (without complementary loss). In
our complete recognition framework, the two representations
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(Feature Network and Raw Waveform Complementary Network)
are concatenated to form the final feature input, i.e., combining
both expert knowledge and automatically derived raw waveform
information, to the recognition layer. Note that with this
particular optimization approach, the cosine similarity would
tend to converge to value close to −1; however, in order to
satisfy the classification loss, this complementary constraint
would not directly equals to −1 as it will lead to an identical
representation as the Feature Network embedding, which is
a complete redundant representation deteriorating recognition
performances. Detailed analysis on the effect of complementary
loss value is presented in section 4.1.

3. EXPERIMENT

3.1. Experimental Setting
In our experiment, we use leave one dyad out cross validation
scheme, i.e., to resemble the true application scenario where the
two interacting interlocutors are both unseen in our training
set, with unweighted average recall (UAR) as the evaluation
metric for both databases. In both Feature Network and Raw
Waveform Complimentary Network, we utilize Adam optimizer
with learning rate set as 10−3 and train 20 epochs with mini-
batch size of 32. The hand-crafted features are z-normalized for
each dimension to zero mean and unit variance for each speaker.
The Feature Network has a 64 nodes fully-connected layer with
dropout.

For the Raw Waveform Complementary Network, each frame
is convolved with 40 filters with kernel size of 20 to extract
features from high sampling rate time domain signal, and then
we downsample to 8 kHz by pooling each filter output with a
pool size 2. To extract long-term characteristics of the speech
and roughness of the speech signal, we convolve the pooled
frame by kernel size 40 in each filter followed by max-pooling
layer across the channel domain with a pool size of 10. Then,
we use 2 stacked LSTMs each with 256 cells with attention
mechanism to learn the sequential relation. Afterwards, a fully
connected layer with 64 nodes is used to derive the representation
from raw waveform data. The two constrained fully-connected
layers from the frozen Feature Network and the Raw Waveform
Complementary Network, are concatenated to form the final
augmented representation (128 dimensional vector) for each
sample. The weight of the complete loss function (Equation 2)
is specified as w = 0.6 using grid-search.

3.1.1. Comparison of Front-End Models
The following front-end convolutional neural networks are
compared as baseline for raw waveform modeling. We keep
Raw Waveform Complimentary Network only without the cosine
constraint while replacing the convolutional neural network with
different well-known architectures. We implement VGG-like
and Inception-like networks following the original design while
reduce to 6 layers since deep layer suffer from serious overfitting
problem in our context. Moreover, we examine the results based
on a sequence-to-sequence architecture implemented with the
software auDeep (Freitag et al., 2017), which has been used in

the series of ComparE challenges for paralinguistics recognition
from speech.

• P: The architecture proposed in a recent work (Tzirakis et al.,
2018) that works directly with raw waveform for SER

• VGG: A VGG-like network with 6 convolutional layers
• Inception: A Inception-like network with 6 convolutional

layers
• auDeep: An unsupervised acoustic sequence-to-sequence

feature extractor (Freitag et al., 2017)
• Raw: Raw Waveform Complimentary Network without the

cosine constraint.

3.1.2. Comparison of Framework Design
We also compare our framework with different components
in our model in the following experiments in the IEMOCAP
and the MSP-IMPROV databases using either eGeMAPS or
EmoBase2010 as the hand-crafted feature sets. The comparison
baselines are listed as below:

• Raw: Raw Waveform Complimentary Network only without
the cosine constraint

• Ftr: Feature Network in stage 1
• nC: Dual network architecture with the same structure as our

proposed DCaEN but learning without the cosine constraint
• CF: DCaEN with cosine similarity constraint applied directly

on the hand-crafted features without the Feature Network
embedding learning

• uF: DCaEN with unfrozen (adaptable) Feature Network that
updates parameters simultaneously with the optimization of
RawWaveform Complementary Network in stage 2

• C0: DCaEN with targeted cosine similarity constraint
converge close to 0 instead of−1

• R_C: Raw waveform network with cosine similarity constraint
but without concatenating the embedding from the Feature
Network.

• MSE: DCaEN minimizing mean square error constraint
instead of cosine similarity.

3.2. Results
3.2.1. Recognition on the IEMOCAP
The results in comparing raw waveform models for the
IEMOCAP are demonstrated in the left part of Table 1. Our
proposed architecture achieves 52.82% unweighted average recall
which is a 17.25, 16.60, 12.34, and 8.26% relative improvement
compared to P, VGG, Inception, auDeep network structures. The
architecture is designed specifically to model raw waveform, i.e.,
capturing spatio-temporal characteristics of raw waveform for
emotion recognition, while most of these compared architecture
are designed for other purposes (mostly object recognition tasks).
Even for the structure of P, which is specialized in modeling raw
waveform for SER, they assess only on the IEMOCAP database,
where we have shown that the accuracy does not generalize
to the MSP-IMPROV database. A complete experimental result
summarizing different baselines for the IEMOCAP is shown in
Table 2. The upper part of the table shows the results of using
the eGeMAPS feature set in the Feature Network, and the lower
part of the table provides the results using the Emobase2010
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TABLE 1 | Comparing emotion recognition performances of different front-end networks on the IEMOCAP and the MSP-IMPROV databases.

IEMOCAP MSP-IMPROV

P (%) VGG (%) Inception (%) auDeep (%) Raw (%) P (%) VGG (%) Inception (%) auDeep (%) Raw (%)

Sad 54.34 49.17 61.90 34.01 72.05 2.51 5.20 11.30 9.03 26.21

Happy 38.39 28.42 34.11 48.18 27.81 21.69 37.93 27.46 43.72 12.14

Angry 36.54 49.86 40.80 57.30 55.85 2.83 9.34 4.67 14.14 10.61

Neutral 50.94 53.75 53.86 55.65 55.56 81.07 65.31 83.18 61.75 79.93

UAR 45.05 45.30 47.02 48.79 52.82 27.03 29.45 28.85 32.16 32.22

Bold values indicate the best performing results.

TABLE 2 | Comparing performances of emotion recognition for different models on the IEMOCAP.

eGeMAPS Raw (%) Ftr_eg (%) E_nC (%) E_Ceg (%) E_uF (%) E_C0 (%) R_C (%) MSE (%) DCaEN (%)

Sad 72.05 64.11 66.14 71.22 68.63 64.21 71.22 59.69 68.45

Happy 27.81 52.87 49.69 54.16 49.39 49.82 25.31 45.23 50.12

Angry 55.85 54.67 54.67 47.96 54.49 54.49 57.75 60.56 58.30

Neutral 55.56 57.79 57.44 52.93 56.03 59.66 60.25 63.47 60.36

UAR 52.82 57.36 56.99 56.57 57.14 57.04 53.63 57.23 59.31

Emobase Raw (%) Ftr (%) nC (%) CF (%) uF (%) C0 (%) R_C (%) MSE (%) DCaEN (%)

Sad 72.05 66.70 66.97 59.13 58.30 65.68 80.44 66.14 70.02

Happy 27.81 51.89 50.24 48.35 52.32 51.22 32.95 51.65 50.18

Angry 55.85 59.11 62.19 59.75 57.84 62.10 41.89 61.11 59.93

Neutral 55.56 52.93 50.76 46.55 49.36 50.59 42.68 56.21 55.85

UAR 52.82 57.66 57.54 53.44 53.71 57.39 49.49 58.78 59.00

DCaEN is our proposed Dual Complementary Acoustic Embedding Network. The best UAR obtained is in BOLD: 59.31%.

feature set. The details of features are described in sections 2.1,
2.2. The confusionmatrix of the best performed results are shown
in Figure 4.

3.2.1.1. eGeMAPS

We obtain 59.31% UAR with our proposed DCaEN, which
outperforms all other baselines. In the baseline model, Raw
obtains 52.82% UAR that is lower than Ftr, which achieves
57.36%. This result reinforces past literature in indicating better
discriminative power can be achieved by using the knowledge-
based acoustic features compared to learning directly from
the raw waveform. The recall of Raw for happiness category
suffers from a significant drop from Ftr, and the recall of
neutral class is also slightly worse than Ftr while the sadness
category performs better than Ftr. The difference indicates that
models with raw waveform and hand-crafted features possess
distinct characteristics in terms of capturing different emotion
classes, which further supports the idea to model these two
feature streams within a complementary feature augmentation
paradigm. When comparing to our proposed DCaEN, Raw

and Ftr demonstrate 6.49 and 1.95% relative deterioration in
accuracy rates.

To further investigate the effect in the network designs of
DCaEN, we compare nC to examine the effect of our use of
complementary constraint. nC model can be regard as a naive
concatenation of both hand-crafted feature embedding and raw-
waveform embedding, and the results barely improves (56.99%)
likely due to highly redundant acoustic information exists in both
embeddings. On the other hand, CF obtains 56.57% UAR that
is also inferior than our proposed model. The 88-dimensional
eGeMAPS features without Feature Network learning do not
possess enough emotion discriminative information, and it
may not serve as an adequate targeted frozen representation
when carrying out complementary embedding learning. This
demonstrates that by using hand-crafted feature directly for
the complementary learning is not ideal. When examining
the accuracy obtained using uF, i.e., the non-frozen Feature
Network as embedding, it still performs better than using hand-
crafted feature directly (CF) but lacks behind as compared
to our proposed DCaEN, which requires the Feature Network
to be frozen once learned. This result further suggests
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FIGURE 4 | These are the confusion matrices of DCaEN.

that the frozen Feature Network enforce the complementary
learning to be robust without tuning excessive number of
parameters.

Furthermore, in contrast to limit the complementary cosine
similarity loss close to −1 (DCaEN), we compare to the results
of a model with orthogonal cosine constraint (C0, i.e., limit
the cosine similarity loss to be close to zero). The DCaEN
obtains a 3.98% relative superior performance over C0 suggesting
that orthogonal constraint may lead to learning a converged
embedding space that is irrelevant to emotion, i.e., only different
from the Feature Network embedding but not complementary.
To verify the effective of complementary loss constraint, we
use R_C which is derived based on learning representation
from waveform with constraint, but the recognition layer does
not use the waveform-feature augmentation. In this model, we
observe an increase of 0.81% compared to using Raw only.
Furthermore, we explore mean square error as loss function
denoted as MSE which declines 2.08% compared to DCaEN.
Finally, we compare our proposed DCaEN with recent studies
within the same experimental setup, which achieves a slightly
worse recognition rates (58%) on 4 class emotion recognition
task (Lakomkin et al., 2017). The better performance of DCaEN
corroborates the capability and the potential of the model.

3.2.1.2. EmoBase2010

We conduct similar experiments using Emobase2010, which is
a much higher dimensional feature set capturing exhaustive
granular and statistical functions of the acoustic stream, as
an input to the Feature Network to train our DCaEN. The
results are shown in the lower part of Table 2, all of the
baseline models are the same as the ones when using eGeMAPS
feature set. Several observations can be made, the approach
of using hand-crafted feature directly, i.e., CF, damages the
recognition rates severely (7.90% relative drop), which is likely
due to the even higher dimensional features of Emobase2010
that contains emotionally irrelevant information. We also see
a similar result occurs for the uF model, which achieves an
UAR of 53.71% only; the higher dimensional representation of
Emobase2010 when combining with an adaptable (non-frozen)
Feature Network representation would result in an excessive
number of parameter learning causing an degradation in the

overall network’s emotion recognition ability. Similar trend is
also observed when examining accuracy obtained using C0,
i.e., orthogonal constraint, and R_C, i.e., using complementary
constraint-enhanced raw waveform embedding, as described in
section 3.2.1.1.MSE brings 1.94% relative improvement over Ftr
though there is a minor gap (0.37%) compared to DCaEN.

When comparing the effectiveness between the two hand-
crafted Feature Network, eGeMAPS obtains 57.36% whereas
Emobase2010 obtains 57.66%, for the IEMOCAP database. The
slightly higher accuracy of Emobase2010 implies that a higher
dimension of acoustic feature is in favor of the recognition
performance. However, for IEMOCAP database, under the
complementary learning scheme, this brute-force design of
hand-crafted feature with thousands of dimensions limits
the complementary learning capacity, e.g., DCaEN performs
better with the 88 dimensional eGeMAPS feature than the
1,536 dimensional Emobase2010 feature. Moreover, the lower
recognition performance of R_C with Emobase2010 (49.49%)
than eGeMAPS (53.63%) is another clue that the additional useful
complementary information extracted from high dimensional
feature space is less than those extracted from a compact and
robust minimal feature set; another plausible reason is that when
eGeMAPS are first proposed in the literature, IEMOCAP is one
of its evaluation dataset.

3.2.2. Recognition on the MSP-IMPROV
We also explore DCaEN on the MSP-IMPROV database by
using these two different feature sets. The front-end network
architectures comparison results are shown in the right half
part of Table 1. Our proposed architecture attains 32.22% which
is relatively superior than P, VGG, Inception, and auDeep
architectures with 19.20, 9.41, 11.68, and 0.19%, respectively.

3.2.2.1. eGeMAPS

The results in the upper part of Table 3 shows that our
proposed DCaEN achieves 44.42% UAR, which is 37.86 and
6.60% relatively higher than the Raw and the Ftr when applying
the eGeMAPS feature set in Feature Network. The confusion
matrix of DCaEN result is shown in Figure 4C. The better
predicted emotion classes in Raw and Ftr are distinct, e.g.,
happiness and angry classes performs better in Ftr while Raw
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TABLE 3 | Comparing performances of emotion recognition for different models on the MSP-IMPROV.

eGeMAPS Raw (%) Ftr (%) nC (%) CF (%) uF (%) C0 (%) R_C (%) MSE (%) DCaEN (%)

Sad 26.21 16.50 17.51 15.93 18.08 20.11 18.31 15.71 20.56%

Happy 12.14 50.98 53.97 50.53 49.39 51.74 27.61 50.26 49.43

Angry 10.61 25.13 27.27 20.20 31.94 29.42 13.13 28.03 29.17

Neutral 79.93 74.06 70.46 75.90 74.52 71.90 84.41 77.16 78.52

UAR 32.22 41.67 42.31 40.64 43.48 43.29 35.86 42.79 44.42

Emobase Raw (%) Ftr (%) nC (%) CF (%) uF (%) C0 (%) R_C (%) MSE (%) DCaEN (%)

Sad 26.21 20.68 23.62 25.99 24.75 21.36 2.15 20.34 27.57

Happy 12.14 57.60 58.59 54.08 56.05 57.64 42.02 59.30 57.45

Angry 10.61 31.57 34.85 33.59 33.46 33.46 14.14 34.22 38.01

Neutral 79.93 71.01 69.77 65.08 64.74 70.81 76.27 70.32 63.88

UAR 32.22 45.21 46.71 44.69 44.75 45.82 33.65 46.04 46.73

DCaEN is our proposed Dual Complementary Acoustic Embedding Network. Bold values indicate the best performing results.

obtains recognition performance in sadness and neutral classes.
All of the baseline model comparisons are the same as in the
IEMOCAP database. The naive concatenation model, i.e., CF,
without complementary loss learning obtains 42.31%, which
still has a 4.99% performance gap beneath DCeAN. CF causes
a drop in accuracy suggesting a non-linear dense layer used
in Feature Network is essential in condensing emotionally-
relevant acoustic information from the hand-crafted features.
In the MSP-IMPROV experiment with eGeMAPS, using an
augmented representation is crucial to obtain an improvement
in the recognition, e.g., by examining R_C, it attains minor
improvement over Raw but only with 33.65% UAR. On the other
hand, MSE can improve the UAR to 42.79% and C0 obtains
43.48%which are both lower thanDCaEN. This is another clue to
show essentialness of learning with our specific complementary
constraint.

3.2.2.2. EmoBase2010

The experimental results using EmoBase2010 feature set are
demonstrated at the lower part of Table 3, which also includes
the comparison among different baselines. The DCaEN model
with 46.73% UAR outperforms not only Raw with 32.22% UAR
but also Ftr with 45.21% UAR. The confusion matrix of DCaEN
result is shown in Figure 4D. The Ftr using EmoBase2010 feature
set obtains higher performance in happiness and angry classes,
which is identical to the trend with the eGeMAPS feature set. The
naive concatenation of both Feature Network embedding and raw
waveform complementary embedding (nC) has slightly better
performance (46.71%) than using either one type of embeddings
separately. Both uF and C0 results are in lower UAR than Ftr.
Noted that uF and C0 using eGeMAPS feature obtain better
results than Ftr, this may due to the increasing complexity in
optimizing higher dimensional input feature when the Feature
Network is not frozen or the cosine constraint is specified to be
zero. When observing the model of R_C, by discarding Feature

Network and using only raw waveform learned complementary
embedding for recognition, the minority class suffers from
imbalance class distribution issue, i.e., 2.15% in sadness and
14.14% in angry. Meanwhile, DCaEN is robust against issue of
minority classes recognition.

4. DISCUSSIONS

4.1. Analysis on Levels of Complementary
Constraint
In this session, we attempt to understand the effect on the
levels of complementary loss constraint of our proposed DCaEN
model has on the final accuracy obtained. To evaluate this effect
experimentally, we train the DCaEN with a modified threshold-
ed negative cosine similarity loss function,

Lthres = w
∣

∣Lcos − threshold
∣

∣ − (1− w)Lce (4)

which can limit the value of cosine complementary constraint to
the specified threshold when training the DCaEN.

4.1.1. Analysis on the IEMOCAP
Table 4 reports the results obtained by enforcing different
targeted threshold values in the DCaEN framework. The trend
that we observe is that the performance improves as the threshold
tending toward more negative values. The phenomena has an
underlying interpretation to do with the intensity of constraint
during training, i.e., orthogonal cosine constraint has limited
strength to confine complementary learning in an emotionally
relevant space (the network could potentially just converge to a
random space that is orthogonal but without any affect-related
information); we observe indeed that the recognition capacity
gradually enhances as cosine similarity constraint tend toward
more negative.

Besides presenting recognition rates, we further provide the
visualization results to illuminate the learned latent embeddings

Frontiers in Computer Science | www.frontiersin.org 9 May 2020 | Volume 2 | Article 13

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Li et al. Dual Branch Acoustic Embedding Network

of both Feature Network and Complementary Raw Waveform
Network in our proposed DCaEN. We use t-distributed
Stochastic Neighbor Embedding (t-SNE) for visualization. From
Figure 5, we can observe that the raw waveform embedding
and hand-crafted feature embedding form a more separated
and opposite pattern as the threshold becomes closer to −1.
Additionally, the more negative correlation imposed on the
two representations the more hand-crafted feature embedding
distributed similarly to the raw waveform embedding. These two
space seem to become reverse mirroring to each other, and it
becomes intuitive as we augment these two representations to
improve the overall recognition rates.

4.1.2. Analysis on the MSP-IMPROV
As shown in Table 4, a similar trend is also observed for theMSP-
IMPROV, i.e., the UAR performance improves as the threshold
becomes more negative. We further use t-SNE to further

TABLE 4 | The results of different threshold on cosine similarity in both IEMOCAP

and MSP-IMPROV databases.

IEMOCAP MSP-IMPROV

Threshold UAR (%) Threshold UAR (%)

0 57.04 0 41.41

−0.5 57.49 −0.5 42.17

−0.6 57.82 −0.6 42.60

−0.7 58.21 −0.7 42.78

−0.8 58.57 −0.8 43.16

−1 59.31 −1 44.42

As the threshold of complementary loss reaches closer to -1, the UAR is higher.

reduce the dimension of both Feature Network embedding and
raw waveform complementary embedding to provide a 2D
visualization. From Figure 6, when the threshold is closer to
0, i.e., learning to become orthogonal between two embedding,
the resulting distribution of the two embedding becomes very
dissimilar, e.g., as shown in Figures 6A,B, the embedding of
hand-crafted feature (indicated in blue) has a clustered shape, but
the embedding of raw waveform shows an extremely irregular
form. When the thresholds becomes closer to -1, the raw
waveform embedding and the hand-crafted feature embedding
form an opposite mirroring pattern. Specifically, if we compare
between threshold set at 0 and closer to −1, as the threshold
becomes more negative, the representation learned from raw
waveform seems to converge to a similar shape as the hand-
crafted feature embedding just at a 180 degree mirroring reverse.

Furthermore, we can explore the differences between two
corpora evaluated in this work. Comparing the Figure 5 with
the Figure 6, we can see that the distance between the learned
raw waveform and the feature embedding in the Figure 5 is
larger than the Figure 6. This result confirms our experimental
result indicating that the recognition UARs of our DCaEN
is lower for the MSP-IMPROV than for the IEMOCAP; the
MSP-IMPROV database is a more recent corpus including
more diverse and complex emotion elicitation than the well-
known IEMOCAP. This is also demonstrated in the more
overlapping representations in the MSP-IMPROV as compared
to the IEMOCAP.

4.2. Analysis on the Complementary
Representation
To examine the characteristics of the learned latent
complementary embedding from raw-waveform, we report

FIGURE 5 | The visualization of raw waveform complementary embedding and Feature Network embedding using eGeMAPS feature set in DCaEN are projected on

two dimensional feature space. The visualization figure from (A–F) shows the increasing specified constraint values and the distribution patterns of two embeddings

become similar while in a reverse direction.
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FIGURE 6 | The visualization results of Feature Network embedding using eGeMAPS feature set and complementary embedding on MSP-IMPROV database. The

visualization figure from (A–F) shows change of distributions as the specified constraint value increases.

TABLE 5 | The averaged correlation between the first principal component vector

and different types of acoustic feature categories.

IEMOCAP MSP-IMPROV

eGeMAPS EmoBase2010 eGeMAPS EmoBase2010

Energy 0.227 0.155 0.305 0.283

Freq 0.131 0.130 0.097 0.134

Spectral 0.189 0.176 0.304 0.337

Others 0.222 0.104 0.199 0.120

the averaged correlation between the principal component
and different types of acoustic feature sets. Specifically, we
utilize the first principal component from principal component
analysis (PCA) for further examine of the most relevant
feature type extracted from raw-waveform embedding. We
compute Pearson correlation between this principal vector
and each dimension of eGeMAPS and EmoBase2010 feature
sets. Then, we report the averaged absolute correlation over
the all functional features within each major acoustic feature
categories, i.e., energy, frequency, spectral related parameter
sets, and others; “others” contains features not belonging the
conventional three categories like mean length of unvoiced
region, number of continuous voiced region, or equivalent
sound level.

As results demonstrated in Table 5, we see that a clear
indication that the first component of the complementary

embedding correlate with energy and spectral related features
the most, while frequency related features tend to be less
correlated. This correlation may also contribute to the fact
the raw waveform embedding is better at capturing sad and
angry (arousal dimension) where the feature network is better
at recognizing happy (valence dimension). The results are
slightly different between eGeMAPS and EmoBase2010 feature
sets, e.g., correlation effect to different types of Emobase2010
acoustic feature types in the IEMOCAP is more uniform.
The IEMOCAP and the MSP-IMPROV databases also exhibit
minor differences likely due to idiosyncratic characteristics
of each of these databases. The overall correlational
effect is not very strong, which suggests that the learned
complementary latent space do encompass partial known
acoustic properties of hand-crafted features and further captures
additional information beyond these feature sets from the
raw-waveform.

5. CONCLUSION

In this work, we present an evaluation on the recently
proposed Dual Complementary Acoustic Embedding Network
(DCaEN). It contains two sub-structures: a Feature Network
that uses expert knowledge-driven acoustic parameters and a
RawWaveform Complementary Network that uses raw waveform
with complementary learning constraint. DCaEN utilizes a
negative cosine complementary constraint in order to leverage
the hand-crafted features to enhance and extract discriminative
characteristics from raw waveform, and by concatenating these
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two representations, we demonstrate that the robustness of our
framework across database. Specifically, it can improve 4-class
emotion recognition rates to 59.13% on the IEMOCAP dataset
with eGeMAPS and 46.22% on the MSP-IMPROV dataset with
Emobase2010.

In the work, the core idea of DCaEN can be extended to
other state and trait recognition tasks from speech or other
behavior modalities, which at the moment still relies heavily
on prior expert knowledge in the feature design. Specifically,
aside from constraining on eGeMAPS and EmoBase2010,
we can explore other domain expert knowledge as auxiliary
information in better achieving high-performing end-to-end
SER. Technically, deep metric learning can be included
to learn an even more constrained feature space in the
complementary learning process; further investigation on
exactly what particular aspect of speech acoustics is being
extracted additional from the raw waveform will be an
interesting scientific direction to pursue next. In this way,
the model can facilitate human knowledge and machine
capability to be integrated together for precise understanding
of acoustic manifestation of affect state and robust emotion
sensing technology.
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